当工程师想利用电气、电子的机器在现实世界中做些什么时,他们会思考怎样才能将电信号变为“力”?将电信号转换为力的就是传动器,即电机。可以将电机视作“将电气转换为机械的力的元件”。
Zui基本的电机是 “DC电机(有刷电机)”。在磁场中放置线圈,通过流动的电流,线圈会被一侧的磁极排斥,被另一侧磁极所吸引,在这种作用下不断旋转。在旋转过程中令通向线圈中的电流反向流动,使其持续旋转。电机中有个叫"换向器"的部分是靠"电刷"供电的,"电刷"的位置在"转向器"上方,随着旋转不断移动。通过改变电刷的位置,可使电流方向发生变化。换向器和电刷是DC电机的旋转所bukehuoque的结构,DC电机(有刷电机)的运转示意图如下图所示。
换向器切换线圈中电流的流向,反转磁极的方向,使其始终向右旋转。电刷向与轴一同旋转的换向器供电。
活跃于多个领域的电机
我们按电源种类和转动原理对电机进行了分类如下图。让我们来简单看看各类电机的特点和用途吧。
构造简单而又容易操控的DC电机(有刷电机)通常被用在家电产品的“光盘托盘的开闭”等用途上。或用在汽车的“电动后视镜的开闭、方向控制”等用途上。它既廉价又能用在多个领域上,但它也有缺陷。由于换向器会和电刷接触,它的寿命很短,必须定期更换电刷或保修。
步进电机会随着向其发出的电脉冲数旋转。它的运动量取决于向其发出的电脉冲数,适用于位置调整。在家庭中通常被用于“传真机和打印机的送纸”等。由于传真机的送纸步骤取决于规格(刻纹、细致度),随着电脉冲数旋转的步进电机非常便于使用。很容易解决信号一旦停止机器就会暂时停止的问题。
旋转数随电源频率变化的同步电机被用于“微波炉的旋转桌”等用途上。电机组里有齿轮减速器,可以得到适合加热食品的旋转数。感应电机也受电源频率的影响,但频率和旋转数不一致。以前这类AC电机被用在风扇或洗衣机上。
各式各样的电机活跃于多个领域。其中,BLDC电机(无刷电机)具有怎样的特点才会用途如此之广呢?
BLDC电机是如何旋转的?
BLDC电机中的“BL”意为“无刷”,就是DC电机(有刷电机)中的“电刷”没有了。电刷在DC电机(有刷电机)里扮演的角色是通过换向器向转子里的线圈通电。那么没有电刷的BLDC电机是如何向转子里的线圈通电的呢?原来BLDC电动机电机采用永磁体来做转子,转子里是没有线圈的。由于转子里没有线圈,不需要用于通电的换向器和电刷。取而代之的是作为定子的线圈。BLDC电机的运转示意图,如下图。
DC电机(有刷电机)中被固定的永磁体所制造出的磁场是不会动的,通过控制线圈(转子)在其内部产生的磁场来旋转。要通过改变电压来改变旋转数。BLDC电机的转子是永磁体,通过改变周围的线圈所产生的磁场的方向使转子旋转。通过控制通向线圈的电流方向和大小来控制转子的旋转。
BLDC电机将永磁体作为转子。由于无需向转子通电,不需要电刷和换向器。从外部对通向线圈的电进行控制。
BLDC电机的优点
BLDC电机的定子上有三个线圈,每个线圈有两根电线,电机中共有六根引出线。实际上,由于是内部接线,通常只需要三根线,但还是比先前所说的DC电机(有刷电机)要多出一根。纯靠连接电池的正负极是不会动的。至于如何运行BLDC电机将在本系列的第二回中进行说明。此次我们要关注的是BLDC电机的优点。
BLDC电机的第一个特点是“高效率”。可以控制它的回旋力(扭矩)始终保持Zui大值。DC电机(有刷电机)的话,旋转过程中Zui大扭矩只能保持一个瞬间,无法始终保持Zui大值。若DC电机(有刷电机)想要得到和BLDC电机一样大的扭矩,只能加大它的磁铁。这就是为什么小型BLDC电机也能发出强大力量的原因。
第二个特点是“良好的控制性”,与第一个有所关联。BLDC电机可以丝毫不差的得到你所想要的扭矩、旋转数等。BLDC电机可以jingque地反馈目标旋转数、扭矩等。通过jingque的控制可以抑制电机的发热和电力的消耗。若是电池驱动,则能通过周密的控制,延长驱动时间。
还有耐用,电气噪音小等特点。上述两点是无电刷所带来的优势。而DC电机(有刷电机)由于电刷和换向器之间的接触,长时间使用会有损耗。接触的部分还会产生火花。尤其是换向器的缝隙碰到电刷时会出现巨大的火花和噪音。若不希望使用过程中产生噪音,会考虑采用BLDC电机。
BLDC电机适用于这些方面
高效率、多样操控、寿命长的BLDC电机一般会用在哪些地方呢?往往被用于能够发挥其高效率、寿命长的特点,被连续使用的产品中。例如:家电。人们很早就开始使用洗衣机和空调了。Zui近电风扇中也开始采用BLDC电机,并成功促使消耗电力大幅度下降。正是因为效率高才让消耗电力下降的。
吸尘机中也采用了BLDC电机。在某个事例中,通过变更控制系统,实现了旋转数的大幅度上升。这个事例体现了BLDC电机的良好控制性。
作为重要存储介质的硬盘,其旋转部分也采用了BLDC电机。由于它是需要长时间运转的电机,耐用性很重要。当然,它还有极力抑制电力消耗的用途。这里的高效率也和电力的低消耗有关。
BLDC电机的用途还有很多
BLDC电机有望被应用在更广泛的领域中。BLDC电机将会在小型机器人,尤其是在制造以外的领域提供服务的“服务机器人”中得到广泛应用。“定位对于机器人很重要,不是应该使用随电脉冲数运行的步进电机吗?”或许会有人这么想。在力量控制方面,BLDC电机更合适。若采用步进电机,像机器人手腕这样的构造要固定在某个位置需要提供相当大的电流。若是BLDC电机,则能配合外力只提供所需的电力,从而抑制电力的消耗。
还可用于运输方面。一直以来,老年人电动车或高尔夫球车中大多采用简单的DC电机,但Zui近都开始采用具有良好控制性的高效率BLDC电机了。可以通过细微的控制,延长电池的持续时间。BLDC电机还适用于无人机中。尤其是多轴机架的无人机,由于它是通过改变螺旋桨的旋转数来控制飞行姿态的,能够精密控制旋转的BLDC电机很有优势。
怎么样?BLDC电机是效率高、控制性良好、寿命长的优质电机。要想将BLDC电机的力量发挥到jizhi,则需要正确的控制。该如何操作呢?
仅靠连接无法转动
内转子型BLDC电机是典型的BLDC电机的一种,其外观与内部构造如下图所示。带刷DC电机(以下称为DC电机)的转子上有线圈,外侧放有永磁体。BLDC电机的转子上有永磁体,外侧是线圈。BLCD电机的转子没有线圈,是永磁体,没有必要在转子上通电。实现了不带通电用的电刷的“无刷型”。
另一方面,与DC电机相比,控制也变得更难了。并不是只要将电机上的电缆接上电源就好了。本来就连电缆数目都不一样。和“将正极(+)和负极(-)连上电源”的方式不同。
转子是永磁体,无法通电。无需电刷及换向器,可谋求延长使用寿命
改变磁通量的方向
为了转动BLDC电机,必须控制线圈的电流方向及时机。下图2-A是将BLDC电机的定子(线圈)和转子(永磁体)模式化的结果。使用该图片,思考一下转子旋转的情况吧。思考使用3个线圈的情况。实际上也有使用6个或以上的线圈的情况,但在考虑原理的基础上,每120度放一个线圈,使用3个线圈。电机将电气(电压、电流)转换为机械性旋转。xia'tBLDC电机又是如何转动呢?先来看一看电机中发生了什么吧。
图2-A:BLDC电机转动原理
BLDC电机中每隔120度放置一个线圈,总共放置三个线圈,控制通电相或线圈的电流
如图2-A所示,BLDC电机使用3个线圈。这三个线圈用以在通电后生成磁通量,将其命名为U、V、W。将该线圈通电试试看吧。线圈U(以下简称为“线圈”)上的电流路径记为U相,V的记录为V相,W的记录为W相。看一看U相吧。向U相通电后,将产生如图2-B所示的箭头方向的磁通量。
但实际上,U、V、W的电缆都是互相连接着的,无法仅向U相通电。在这里,从U相向W相通电,会如图2-C所示在U、W产生磁通量。合成U和W的两个磁通量,变为图2-D所示的较大的磁通量。永磁体将进行旋转,以使该合成磁通量与中央的永磁体(转子)的N极方向相同。
图2-B:BLDC电机的转动原理
从U相向W向通电。只关注线圈U部分,则发现会产生如箭头般的磁通量。
图2-C:BLDC电机的转动原理
从U相向W相通电,则会产生方向不同的2个磁通量。
图2-D:BLDC电机的转动原理
从U相向W相通电,可以认为产生了两个磁通量合成的磁通量。
若改变合成磁通量的方向,则永磁体也会随之改变。配合永磁体的位置,切换U相、V相、W相中通电的相,以变更合成磁通量的方向。连续执行此操作,则合成磁通量将发生旋转,从而产生磁场,转子旋转。
下图3所示的是通电相与合成磁通量的关系。在该例中,按顺序从1-6变更通电模式,则合成磁通量将顺时针旋转。通过变更合成磁通量的方向,控制速度,可控制转子的旋转速度。将切换这6种通电模式,控制电机的控制方法称为“120度通电控制”。
图3:转子的yongjiu磁石会像被合成磁通量牵引一样旋转,电机的轴也会旋转
使用正弦波控制,进行流畅的转动
在120度通电控制下合成磁通量的方向会发生旋转,但其方向只有6种。比如将图3的“通电模式1”改为“通电模式2”,则合成磁通量的方向将变化60度。转子将像被吸引一样发生旋转。从“通电模式2”改为“通电模式3”,则合成磁通量的方向将变化60度。转子将被该变化所吸引。这一现象将反复出现。这一动作将变得生硬。有时这动作还会发出噪音。
能消除120度通电控制的缺点,实现流畅的转动的正是“正弦波控制”。在120度通电控制中,合成磁通量被固定在了6个方向。进行控制,使其进行连续的变化。在图2-C的例子中,U和W生成的磁通量大小相同。若能较好地控制U相、V相、W相,则可让线圈各自生成大小各异的磁通量,精密地控制合成磁通量的方向。调整U相、V相、W相各相的电流大小,生成了合成磁通量。通过控制这一磁通量连续生成,可使电机流畅地转动。
图4:正弦波控制
正弦波控制可控制3相上的电流,生成合成磁通量,实现流畅的转动。可生成120度通电控制无法生成的方向上生成合成磁通量